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DYNAMIC SIMULATION OF ~ONTRULS IN PERTAIN PARABOLIC SYSTEMS* 

YU.S. KORBICH, V.I. MAKSIMOV and YU.S. OSIPOV 

Problems of the dynamic simulation of controls in parabolic systems 
involving dissipative operators are considered. Algorithms, stable with 

respect to information noise and computation errors, which reconstruct 
the unknown controls for a fairly general class of systems, are 
described. Examples are presented. 

A method was proposed previously /l, 2/ for investigating problems 
of reconstructing the characteristics of dynamic systems, based on ideas 
of the theory of positional control /3/ and the theory of ill-posed 
problems /4f and valid for systems with a finite number of degrees of 
freedom. This method will now be extended to new classes of systems 
with distributed parameters. 

I. The content of the problem studied here can be illustrated through a model example 
which describes the propagation of oxygen in absorbent tissue /5/. The absorbent tissue is 
assumed to occupy a region 8c R" with boundary p. The concentration of oxygen in the 
tissue at a time tcz T = [&#I at a point 9~ B is denoted by y(n.1). During the time T 
a certain amount of oxygen is absorbed. The rate of absorption u(B,t) is unknown, but at 

discrete times T~ET, ~~.+~=r~+&:, hi>O, iE[O:m--J,z,=t,, zm=6 the concentration of 

oxygen y(q, 7i) is measured to within a certain accuracy, i.e., a function 9 (% ri) approxi- 

mating Y (s, ri) is determined. It is required to indicate a procedure for computing u(n,t) 
synchronously with the absorption process. 

A mathematical model of the absorption process may be described by the relations 

Here aIK is the subdifferential of the characteristic function of the set K = {WE 

L, (8) I w (4 > 0 for a.e. nE 8). We shall refer to the function u(a) as the control. Our 
problem is to reconstruct the control. 

In accordance with the approach used in fl, 2/, we will now compute the unknown control 

u (.) as follows. System (1.1) will be associated with a control system H (the model) with a 
control Y(.) and a phase trajectory z(a). We shall then construct an algorithm to shape the 
control v(.) in the model, based on the feedback principle v(.)= v(-;y(.),z(.)), such that 
u(.) approximates the unknown control in a suitable sense. Consequently, we are replacing 
the problem of computing the unknown control by that of devising an algorithm to construct 
the control in the model. This algorithm will essentially be the required algorithm for re- 
constructing the unknown control. 
information. 

It must be stable with respect to distortion of the input 

In this paper the problem of reconstructing the control is considered for non-linear 
parabolic inclusions involving dissipative operators. We will first investigate the problem 
of reconstructing distributed controls in systems 

Y' 0) E Ay (t) f Bu (t) f f (t); t 6z T, YE E, y (to) = y, (1.2) 

which include (1.1) as a special case. Questions of this type are then considered for boundary 
control problems described by the relations 

Y' = ey + B,u,, YE E; rll = &,, II f&) = yo (1.3) 

Essential use will be made here of some ideas from /6, 7/, as well as results from /8/. 
In the concluding part of the paper the constructions will be illustrated by means of examples. 

We shall use the following notation. L(U,X) is the Banach space of continuous linear 
operators from U to X,C(fa,bl;E) and L, (Iu, bl; E) are the standard spaces, W*?([U,~J;E) 
is the space of Strongly absolutely continuous functions with first derivatives in L,(fs,AJ; E); 
W'*2 ((a, bJ; Ef is the space of functions 
fa + e, bJ _, E 

ut(.):[ra, bJ +E 
is an element of the space M%z([a+ s,bJ;E); A 

such that for any e>Ow(.): 
is a partition of the interval 
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T of the mesh 8, i.e., a set Of points {Zi}* tf < 'ti+lr i E IO: m - 11, To = t,, 7, = 6, 6 = maxi (T~+~ - 

%I; acp is the subdifferential of 'p: E +(- M, i- ml; hp” (y) = {z f E I I z IE = inf I z IE, z G 

%J (Y))i A is the closure of a set A c E; D (cp) = {y E E 1 rp (y) < + CQ>; Q c R” is a region 
with boundary I?; Q = Sz x (~,,IY); C = I' x (1,,6). 

2. In a real Hilbert space (E, 1. I) we consider a control system C described by an 
inclusion relation (1.2) with non-linear multivalent dissipative operator A = --arp, rp: E + 
(--=J,+=l a convex, proper, lower semicontinuous function, f(+)ELP(T;E) a given per- 
turbation, us Pc U a control, P a convex, bounded, closed set, (U,jI .II) a real Hilbert 
space, BE L(U,E). Henceforth we shall assume without loss of generality that cp (0) = 0, 
cp (Y) > O- 

A function Y (.) = Y (*; Yo, ZJ (*)) is called a strong solution of system (1.2) for a control 
u (*) E -$,(T; U) and initial state Y, if y(t,) = yor y(.)E C(T;E) n W+*(T;E) and for a.e. 
tET the function satisfies the equation 

Y’ 0) = My (4 + Bu (t) + f (t))” 
It is known t/9/, Proposition 5) that for any Y, E D (cp), 

there exists a unique strong sohtion of (1.2), and moreover 

(2.1) 

u (*) E L, (T; 0 f (-1 E L, (2”; E) 

1 y’ (- ) !L,(T; E:) < 1 Bzl ( ’ ) + f ( ’ ) h; 0’) + $” (Yo) (2.V 

{Y'"'> E D (cp] 
A function y (.) = y(.; y,, u$;',) is called a weak solution of (1.2) if there is a sequence 

such that fl -fYa in E, Y(") (e) = Y (.; Y("), u (.)) -+ Y (.) in C (T; E). A weak 

solution Y (.) = y (a; Y,, 24 (e)) exists for any YO E: D-1, u (.) E L, (T; U), f C-j E L, (T; E) and 
has the following properties: Y(-)E C(T;E) n WI. "((to, @]E) and for a.e. t E 1’ the func- 
tion satisfies (2.1)(/10, Theorem 22), t -+ rp (y (t)) E C ((to, $1; R) t/9/, Proposition 5) . 

Let US briefly recall the essence of our problem, A motion Y(.)of system (1.2) is a weak 
solution, generated by an unknown control Howeve; f.J (t) = p for a.e. te T. Both Y(b) and the 
initial state y, are also unknown. , one has a continuous flow of information about 

Y (*) - elements qi E E produced at times ri E h, such that ]?#i - y (zd) ] < h, h > 0. It is 
required to design an algorithm that reconstructs u(.). 

To compute u(.) we introduce a model, described by the inclusion 

z' (t) E AZ (t) -t- Bvh (t) + f (t), t E 2' (2.3) 

with initial condition z(to)= zo E D (cp), 120 - Qo I< 22 and trajectory 2 (.) = 2 (.; zo, u'l (.)) - 
a strong solution of (2.3). We shall control the model according to the feedback principle. 
;IX:fically, we stipulate the following procedure for constructing the controluh(.) = Uh(.;7C]i, 

I . 

vh (t) = u; for a.e. t E ]7;, ritl) (2.4) 
uj E {a E P ] l ($iy V) < E (Si) + h} 

E (Si, u) = 2 (Sir BU)E + CZ II U 11’ (2.5) 
1 (Si) = inf (2 (Sir V) I7.J E P), Si = 2 (Ti) - $,i 

Let w(.)denote the modulus of continuity of the function p(.),i.e., 

0 (6) = SUP {I Y (t) - Y (5) I I It - E Ii 6, 6 5 E q 

and U, the set of all controls v(-)E L,(T; U) satisfying the condition z(.;yo,u(*))= y(.), 
u (t) E P for a-e. tE T. Tt can be verified that U, contains a unique element u, (-) with 
minimal norm in the space L,(T; U). 

Suppose that the quantities a (A)> 0, 6 (h)> 0, z. = zJh), a (h) +O, h-a-l (h) -0, 1 z. - y, ] f 
Ch have already been chosen and 

a-1 (h) (0 (6 (h)) + 6 (h) (i + cp"s (s,))} -to as h-to+ 
(2-Q 

Theorem 2.1. 

II L+ (*) - us (‘) ]]L.(T:U) + o as h-+0$ 

The proof follows the same lines as in /l/ and is based on the fact that the algorithm for 
generating the control v"(.) in the model guarantees "stabilization" in time T of the func- 
tional 

Remarks. 1. Theorem 2.1 is also true if (2.6) is replaced by the weaker condition 
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(2.7) 

2. If y,~: D(v), we can assume that zo= y,. By (2.2), condition (2.7) will then hold if 
6a-' (h) - 0 as h-+0+. 

3. When generating the control vh(.) one can replace z(z~) by an approximation z*(t&): 1~ 
&it - x* @I) I < ch. 

3, We will now consider the case of system (1.3). Let us assume that 6,X, u,, .!J, are 
real Iiilbert spaces, o:E+E a closed linear operator with dense domain, 7:E-+X a 
linear (boundary) operator, B,: U, + E and B,: U, +X continuous linear operators, u1 = 

u1 (t) E PI, u, = &a (E) E pz for a.e. tE IO,61 (to = 0), P,c U, and P, c U, convex, bounded, 
closed sets. 

Define an operator A EL(E,E) as follows: 

D (A) = (YE 1) (o) lay = O), AY = cy, VYEL) (A) 

In the sequel we shall make the following assumptions /0/. 
1. I>(u)cD(z) and the restriction of z to D (a) is continuous. 

A is the infinitesimal generator of a strongly continuous contracting semigroup 
{S(t)2*1t>O) on E. 

3. There exists an operator 8~ L(Ue,E) with the properties 

where c is a positive constant. 
4. For any tE(O,@l and ~EU,,S(~)B~ED(A). There exists a positive function 

Y I.1 E L, (IO, @I; a) such that 

IIAS(t)Bllt(u;,~)~,<Yt)f*r a.e.tE (O+*) 
Let 

u = u, x u,, u = (tCl,UJ, hE L (U, E) 

Au = A (z$ UJ = l&u, 4 A,u,, vu, E u, 

Il*E u*, Al = rI-'B,, A., = IP(aB - h,B) - B, I-I = 
A -h,f, k,Ep(A) 

where p(A)is the resolvent of A. Then system (1.3) can be rewritten in the form 

Y' =Az+B,u,+crBu,+f, y=z+-Bu,, O,<t,<@ (3.1) 

and this system in turn can be transformed into an equivalent abstract Cauchy problem for the 
system /8/ 

ui=Aw4R,tl,fn*u,+II-II* y=niu 
(3.2) 

R weak solution of system f3.2), hence also of systems (3.1), (1.31, is a function Y(.)= 

y (*; Y,, ZJ (*)) E c ([O, $1; E) defined by 

y (t) = Y (t; y,, u (-)) - s (t) y, 5 s l-f‘s (6 - s)(Au.(s) + n-y (s)) d‘s 
li 

Under the above conditions, 
L, (IO, @I; V) /a/. 

there is a unique weak solution for any Y,E E and u (.)E 

To compute the control n* (*)E u* 8 one can use the algorithm described in Sect.2. This 
is done with the following system playing the part of the model M: 

p‘ (t) = Ap (t) -I- h? ($1 4- wf (a 2 (t) = TIP (t), 0 G t g 6 (3.31 

where we mean by the motion x(t)= Y&q,,, $(.)). 
by the conditions 

The mappings a(h) and 6 (h) are determined 

a (h) +O. ha-' (h) --, 0, 6 (It) a-' (h) 3 0 as h 3 O -j- 

The control @ (.) in the model must be evaluated according to the rule (2.4), assuming 
that 
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With this choice of the model, the maps a(h) and 6 (h) and the rule fox computing the 
control vh(.), Theorem 2.1 holds if z0 ==q+ 

Remczrks. 4. Let 

Then one can define .A tr) via (2.4) I (2.5), assuming in (2.5) that B= A,st=sl*. 
5. Theorem 2.1 is also true if the semigroup {s(t)It?O) is a-dissipative: IS(t) z~~e”‘~e 1, 

Vz E E, 

4. Ea~nrpZes, 1.. Let us consider the boundary control problem for a linear parabolic 
system with Dirichlet conditions. Let dncRn be a bounded open set with a sufficiently 
smooth boundary and 

In order to rewrite system (4+1) in the form (P,3), we proceed as follows fS/: 

a== U,,=L,(Q),X=H’-“l(r), U,=L,(I-), B,=Q 

&==I, a=& ~(P)={IEL~(~)~AYE.L~(Q)} 

where r is the txace operator: 'tg E K"'W if g ED (o), A = At D (A] = He1 (P) n IP (Q). The con- 
tinuous linear operator B: tBff)-L,@) is defined by BE= We, where wu~L,fP) is the unique 
generalized Solution of the Dirichlet problem ~~,=a on 51, ~~1~ = 0, i.e., 

Conditions 1-4 of Sect.3 are satisfied, with y = cr+ /8/. The phase state of the 
system at &=o is found from the formula 

and the control q (t), t E IY, Q+J, at time R is determined by the conditions 
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n= 2, Q = ((q1,q*) 10<‘11<1, O<%<~) 
T = KJ, 11, lo (q) = 0, P = (u (rl) = -b w I 

I~((1jId20 for a.e..q=Ql 

The phase trajectory of the model z(.) was computed by an explicit grid method (/ll/. 
Chap.61 with time step-size 6. The region Q was divided into squares of side h,= 0.05 and 

replaced by a uniform grid of mesh h,. The construction of the control vh (.) in the model 

used only the grid values of ?C(T‘,~). 
The figure shows sections at the grid-point nl= 0.27,~ = 0.27 of the control u* (t,n) (solid 

curve), as well as values of Uh (rl, t) determined for 8 = 1/1200,rp (9,~~) = y (v,T~) (dashed curve) 

and 6 = 1 / 1500, rp (n, 71) = Y (n. TV) + 0.25sin(--iOt) (dash-dotted curve). As shown by a numerical ex- 

periment, the quantity /I U, (.) - G(.)/ILcQj is equal to 0.82989 in the first case and 4.66924 in 
the second. 

Remarks. 6. In a computer simulation of controls when E 

4 

m 

is a Sobolev space on Q, it is natural to replace Q by a 

certain grid o= (ni Ij E [I: N]}CQ 
A 

of mesh bi and to assume 

\ Hi' 
that the values of $ (9, Ti) are measured at the grid-points 

2 
+/.# . . 

n,. As the equation of the model one can then-take the dif- 
ference analogue of Eq.(2.3) or (3.3), with &(.) replaced by 
grid functions ~'1 (Q, ~0. 

0 
! t 

.-_ 85 I Remarks. 7. For systems with distributed parameters, 
described by simple boundary-value problems for equations of 
parabolic and hyperbolic type, questions analogous to those 
considered here were discussed, in particular, in a lecture by 

Yu.S. Osipov, entitled "Control and modelling in multidimensional systems", delivered at the 
general meeting of the Department of Mechanics and Control Processes in November 1984. 
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